Jumat, 18 Maret 2011

Nuklir Indonesia


"Semakin Kita fokus pada impian kita. Semakin cepat kita mencapai impian itu.

Fokus menghasilkan energi yang besar, bahkan semakin lama semakin dahsyat. Fokus membuatku bersemangat, berenergi, berkeringat, tetap panas karena membantu aku untuk selalu bergerak. Bergerak melangkah, bergerak lari, bergerak ke arah silau sinar berlian yang memimpinku."

Kita Bisaa!!!

Disusun Ulang Oleh:

Arip Nurahman & Deden Anugrah

Pendidikan Fisika, FPMIPA Universitas Pendidikan Indonesia

&

Follower Open Course Ware at MIT-Harvard University, Cambridge. USA.


Introduction to Applied Nuclear Physics


The Rutherford-Bohr model of the atom with nucleus and orbits labeled.

The Rutherford-Bohr model of the atom. (Courtesy of EPA.)


Level:

Undergraduate

Instructors:

Prof. Kim Molvig

Assignments

Problem Sets Solutions
Problem Set 1 (PDF) (PDF)
Problem Set 2 (PDF) (PDF)
Problem Set 3 (PDF) (PDF)
Problem Set 4 (PDF) (PDF)
Problem Set 5 (PDF) (PDF)
Problem Set 6 (PDF) (PDF)
Problem Set 7 (PDF)

Course Description

This course concentrates on the basic concepts of nuclear physics with emphasis on nuclear structure and radiation interactions with matter. Included: elementary quantum theory; nuclear forces; shell structure of the nucleus; alpha, beta, and gamma radioactive decays; interactions of nuclear radiations (charged particles, gammas, and neutrons) with matter; nuclear reactions; and fission and fusion.

The course is divided into three main sections:

  1. Quantum Mechanics Fundamentals
  2. Nuclear Structure and Nuclear Decays
  3. Interactions in Nuclear Matter and Nuclear Reactions

Syllabus

Course Meeting Times

Lectures: 2 sessions / week, 1.5 hour / session

Course Prerequisites

8.02, 18.02, 22.01

Textbooks

Krane, K.S. Introductory Nuclear Physics. Wiley, 1988.

Liboff, R. L. Introductory Quantum Mechanics. Addison-Wesley, 2003.

Problem Sets

The weekly problem sets are an essential part of the course. Working through these problems is essential to understanding the material.

Problem sets will generally be assigned once every week and will be due the same day in the following week. All problem sets will be posted on the course web site.

Problem set solutions will be posted on the web site following the due date. No problem sets will be accepted after the solutions have been posted.

Exams

There will be a two hour mid term and a comprehensive final exam. The final exam will emphasize material from the entire course, and will be a mixture of factual questions and problems.

Term Paper

There is no term paper required for this course.

Grading

The final grade for the course will be based on the following:


ACTIVITIES PERCENTAGES
Weekly Problem Sets 30%
Mid Term Exam 30%
Final Exam 40%



Calendar

SES # Topics Readings & Handouts
1

Intro Lectures: Basic Nucleus Concepts


2

Intro Lectures: Wave-Particle Duality & Historical Background


3

Quantum Mechanics #1, #2

  • New Concepts
  • Postulate 1 (Observables & Operators)
  • Eigenvalue Problem, Compare Classical State, Free Particles
  • Postulate 2 (Quantum State, psi)
  • Postulate 3 (measurement probabilities)

Liboff 3.1-3.3

Postulates Handout

4

Quantum Mechanics #3, #4

  • Free Particle in Box, Quantization of Energy Levels
  • Interpretation of the Wave Function
  • Solutions in Classically Allowed and Disallowed Regions
  • 1D Scattering Problem, Outgoing B.C.
  • Normalization of psi, Flux Interpretation,
  • Transmission and Reflection Coefficients.
  • Particle in Square Well Energy Eigenvalue Problem
  • Graphical Solution - Fitting Wavelength in Well

Liboff 4.1, 4.2, 4.3

Liboff 7.5, 7.6, 7.7

5

Quantum Mechanics #5, #6

  • Commutators
  • Heisenberg Uncertainty Principle
  • Degenerary, Complete Sets of Commuting Observables

Liboff 5.1-5.5

6

Quantum Mechanics #7, #8

  • Postulate 4 (Time Evolution)Conservation Laws
  • d <>/ dt Expression
  • Ehrenfest Principle and Classical Limit
  • Quantum Mechanical Angular Momentum
  • Eignevalue Problem (for L) via Commutator Algebra
  • Algebraic Possibility of 1/2 Integer l Values
  • Orbital Angular Momentum
  • Spin Angular Momentum
  • Coupled and Uncoupled Representations

Liboff 3.4, 3.5, 6.2

Liboff 9.1-9.3

7

Quantum Mechanics #9

  • Many Particle Wave Functions
  • Symmetries of the Many Particle psi Function
  • Fermions and the Pauli Exclusion Principle
  • Bosons

8

Mid-Term Exam


9

Nuclear Structure #1, #2

  • Essential Features of Nuclear Force
  • Guess the Potential, Vnuc
  • Center of Mass, Remove Degree of Freedom
  • Deuteron Eigenvalue Problem, Ground State
  • Physical Picture of Deuteron
  • Spin Dependence of the Nuclear Force
  • "Tensor" Interaction

Krane 3

Krane 4

10

Nuclear Structure #3, #4

  • Nuclear Shell Model, Oscillator Levels
  • Nuclear Shell Model #2, Spin-Orbit Coupling, Magic Numbers

Krane 5

11

Nuclear Structure #5 -Radioactive Decay, Alpha Decay

Krane 8

12

Gamma Decay

Liboff 10.7

Krane 10

13

Nuclear Interactions #1, - Charged Particle Interactions

Krane 9

Krane 7

14

Beta Decay Nuclear Interactions #1, - Charged Particle Interactions (Cont'd)

Liboff 10.7

Krane 10

15

Nuclear Interactions #2, #3

  • Gamma Ray Iteractions
  • Neutron Interactions

Krane 12

16

Nuclear Interactions #4, #5

  • Fission
  • Fusion

Krane 13

Krane 14



Related Resources

The following is a list of Plasma and Fusion related resources. Some of the web sites have excellent links. You are invited to visit them.

Tidak ada komentar:

Posting Komentar